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Abstract 

Just over fifty years ago, Hubbert correctly predicted that US oil production in 
the lower-48 states would soon peak, despite substantially rising production at 
the time.  Hubbert based his prediction on the empirical observation that the 
production rate at oil reservoirs typically follows a bell-shaped curve that peaks 
near the midpoint of production.  We present a highly simplified physical model 
of oil production that gives insight into Hubbert’s success.  This toy model 
relates the total area of active wells to future production and allows for several 
interesting analytical conclusions.  We show analytically, contrary to intuition 
but consistent with historical data, the number of active wells at any given field 
must peak after the production rate peaks.  Since oil production is pressure-
driven, the toy model treats an oil reservoir as a sealed container filled with 
liquid oil and highly pressurized gas.  A pipe extends into the container with a 
cross-sectional area, which represents the total area of wells and changes 
continuously over time.  As gas expands, it forces liquid out of the container 
through the pipe but also drops in pressure, eventually limiting production.  We 
assume the flow obeys Bernoulli’s principle and the gas expands isothermally, 
which leads to a nonlinear ordinary differential equation for the velocity of fluid 
exiting the container.  For most reasonable choices of the area function, the 
differential equation requires a numerical solution.  However, it is possible to 
specify a plausible area function for which the model yields an analytical 
expression for the production rate that corresponds to the bell-shaped curve used 
by Hubbert to predict the peak in US oil production.   
Keywords:  Hubbert’s peak, oil production, logistic growth, pressure-driven 
flow. 
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1 Introduction 

In 1956, Hubbert correctly predicted US oil production in the lower-48 states 
would peak around 1970 [1].  Many oil recovery experts greeted Hubbert’s 
prediction with scepticism [2], since it came at a time when oil production in the 
lower-48 states was rising substantially.  Hubbert based his prediction on the 
simple empirical observation that the peak production rate at oilfields (e.g. in 
units of barrels per day), or more broadly in oil producing regions, typically 
occurs at about the midpoint in production, i.e. at the time when half the 
recoverable oil has been produced.  Hubbert observed that typically a sigmoid-
shaped function is a good approximation to data for the total volume of oil 
recovered from an oil reservoir.  The solution to the logistic differential equation 
is an example of such a function.   The derivative of this function with respect to 
time then corresponds to the oil production rate and is a bell-shaped curve.  
Thus, by fitting data for the oil production rate in the lower-48 states to a 
function that has the form of the derivative of the solution to the logistic 
differential equation, Hubbert was able to extrapolate the curve and correctly 
predict its peak would occur around 1970. 
     In this paper, we develop a highly simplified physical model of oil 
production, in effect a “toy” model, which elucidates underlying physical aspects 
of oil production and helps explain Hubbert’s success.  The toy model relates the 
total cross-sectional area of active wells to future production.  We show 
analytically the model is equivalent to the logistic differential equation under 
plausible assumptions about how the area of producing wells typically varies 
over time.  We also show analytically, contrary to intuition, the number of active 
wells at any given field must peak after the production rate peaks.  We confirm 
this counter-intuitive consequence of the model with historical data from major 
oilfields on four continents. 

2 Logistic growth applied to oil production 

Hubbert pioneered the idea of using logistic growth to model oil 
production [1–3].  The logistic growth function satisfies the logistic differential 
equation (1 / )totQ r Q Q Q= − , where Q is the quantity that is growing, Q  is the 
derivative of Q with respect to time, r  is the initial rate of growth, and Qtot

 is the 
value to which Q is asymptotically growing.  Logistic growth describes any 
growth process in which the per capita growth rate, /Q Q , decreases linearly as 
Q increases.  In the case of oil production, Q represents the cumulative oil 
produced (e.g. in barrels), Q  represents the production rate (e.g. in barrels per 
day), and Qtot

 represents the total recoverable oil that ultimately will be produced 
from a reservoir or, more broadly, from an oil producing region.  
Q =Qtot /(1+ exp(r(tm − t)))  is the solution to logistic differential equation, where 
tm  is the midpoint time (i.e. the time at which Q has grown to Qtot /2).  The 
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derivative of this function is given by 2exp( ( )) /(1 exp( ( )))tot m mQ rQ r t t r t t= − + − , 
which is a bell-shaped function that peaks at the midpoint time tm . 
     In 1956, Hubbert fit data for the U.S. oil production rate in the lower-48 states 
with a curve having the functional form of Q  and correctly extrapolated the 
production rate to its peak in 1970 [1].  A key implication of Hubbert’s use of 
logistic growth to empirically model oil production is that the 1970 peak 
occurred when about half the total recoverable oil in the lower-48 states had been 
produced.  In other words, according to the logistic growth model, the peak in 
the oil production rate signifies the midpoint of production.  Is there an 
underlying physical justification for this decline from the midpoint model 
beyond the empirical observation that production in many oilfields and regions 
appears to obey logistic growth?  In the next section we develop a highly 
simplified model that offers a physical basis for the observed decline from the 
midpoint behaviour. 

3 The toy model 

Our toy model is intended to capture essential physical aspects of oil recovery, 
which is a pressure-driven process ordinarily limited by a drop in pressure and 
infiltration by impurities such as water or gas.  We treat an oil reservoir as a 
sealed container filled with oil (liquid petroleum), which is assumed to be 
incompressible, and an ideal gas at pressure Pg (t)  and volume Vg (t) .  We 
assume the initial pressure of the gas Pg0 is much greater than atmospheric 
pressure Patm .  A pipe, which has a small volume compared to the volume of oil, 
extends into the container with a cross-sectional area A(t), which represents the 
total area of all wells and, for simplicity, is assumed to be a continuous function 
of time.  Expanding gas forces liquid oil out of the container through the pipe.  
We assume the flow of oil obeys Bernoulli’s principle, 
v 2 = 2(Pg − (Patm + ρgh)) /ρ , where v(t)  is the velocity of exiting liquid oil, ρ  
is the density of oil, and h  is the height of the column of oil in the pipe.  We also 
assume the gas expands slowly and thus isothermally, which implies 
Pg0Vg0 = PgVg = Pg (Vg0 +Ve ) , where Ve (t)  is the volume of oil that has exited 
the pipe (i.e. the oil produced).  Combining these equations and rearranging 
gives 
 

Ve =
Pg0Vg0

Patm
* + ρv 2 /2

−Vg0
,     (1) 

 
where Patm

* = Patm + ρgh .  Differentiating eqn. (1) yields the following 
expression for the volume per unit time of liquid oil exiting the pipe: 
 

0 0
* 2 2( / 2)

g g
e

atm

P V vv
V

P v
ρ

ρ
= −

+
 ,     (2) 
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where a dot indicates differentiation with respect to time.  Combining eqn. (2) 
with conservation of mass, which requires that eV Av= , leads to a nonlinear 
ordinary differential equation for the velocity: 
 

* 2 2

0 0

( / 2)atm

g g

A P vv
P V
ρ

ρ
+

= − .     (3) 

 
Equations (1-3) constitute the toy model.  In a real oilfield, the total area of wells 
and the wellhead pressures are the critical determinants of the production rate.  
Similarly, in the toy model one must specify the initial pressure and volume of 
gas and the time-varying area A  to solve eqn. (3) for the velocity v , which then 
can be substituted into eqn. (1) and eqn. (2) in order to find the volume Ve  and 
flow rate eV  of exiting oil.  The pressure that drives the flow of oil at a real 
oilfield is often due to a variety of fluids (e.g. water and gas).  The assumption in 
the toy model of a single expanding gas driving the flow is a simplification 
intended to approximate the pressure-driven aspect of primary oil recovery. 
     For most plausible choices of A, the toy model needs to be solved 
numerically.  However, it is possible to solve the model analytically by making 
the ansatz v = vm exp(r(tm − t) /2), where vm  is the velocity of oil exiting the 
pipe at the midpoint time.  Then eqn. (3) is solved if 
 

( ) / 2
0 0

( )* 2 2( )
(2 )

m

m

r t t
g g m

r t t
atm m

P V rv e
A t

P v e
ρ
ρ
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−=
+

.    (4) 

 
Substituting the ansatz for v  into eqn. (2) yields 
 

 
( )

0 0
( )* 2 2( )

(2 / )

m

m

r t t
g g

e r t t
atm m

P V re
V t

P v eρ

−

−=
+

.     (5) 

 
eV  as given by eqn. (5) has the same functional form as the derivative of the 

solution to the logistic differential equation, which is the bell-shaped curve that 
Hubbert used to predict U.S. peak oil production.  Compare eV  in eqn. (5) to the 
expression for Q  in the previous section to see that their functional forms are the 
same.  Self-consistency requires that conservation of mass eV Av=  is still 
satisfied and this is easily verified.  Alternatively, one can substitute the ansatz 
into eqn. (1) and differentiate to arrive at eqn. (2). 

Figure 1 shows the resulting generic curves for A  and eV  when the same value 
of parameters in eqn. (4) and eqn. (5) are used.  The functions A  and eV  are 

similar bell-shaped curves with the peak for A  occurring after the peak for eV .  
In real oilfields, the number of active wells, to which A  is roughly proportional, 

increases as production ramps up and typically reaches a plateau as 
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Figure 1: A plot of production rate eV  (solid curve) and area of active wells 
A  (dashed curve) versus time for typical parameters, showing that 
the two functions are bell-shaped and A  peaks after eV . 

a field matures.  However, the economics of diminishing returns dictates that the 
number of active wells must eventually decrease to zero as production tails off 
and wells with low production are shut down.  Thus, a bell-shaped curve for the 
function A  is plausible.  Moreover, a consideration of historical oil production 
data also makes it plausible that the peak for the number of wells occurs after the 
peak for the production rate in real oilfields (i.e. A  peaks after eV ).  We have 
compiled historical oil production data from issues of the Oil & Gas Journal 
dating back to 1973 for a large number of oilfields around the world [4].  Such 
data consistently indicates the number of active wells peaks after the production 
rate peaks, as can be seen in fig. 2, which shows the production rate and number 
of active wells for oilfields on four continents.  Indeed, it turns out the toy model 
predicts this counter-intuitive result for any bell-shaped A .  This prediction 
follows from conservation of mass, eV Av= , and the simple physical assumption 
in the toy model that the velocity of oil exiting a well is monotonically 
decreasing over time as oilfield pressure drops, i.e. 0v < .  At Hubbert’s peak, 
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which occurs when 0V Av Av= + = , /A Av v= −  which implies 0A >  (since A  
and v  are intrinsically positive) and therefore A  has not yet peaked.  This 
general result, based on simple physical reasoning, explains the data in fig. 2 and 
other historical data for which the number of active wells is increasing even as 
the production rate is declining. 
 

 
 

Figure 2: The oil production rate (squares) and the number of active wells 
(triangles) versus time for oilfields from four continents.  

4 Conclusion 

We have developed a toy model, based on essential physical aspects of oil 
production, which helps explain Hubbert’s peak.  We have shown analytically, 
under plausible assumptions about how the cross-sectional area of active wells at 
real oilfields typically varies over time, the model is equivalent to the logistic 
differential equation.  We also have shown analytically, contrary to intuition, the 
number of active wells at an oilfield always peaks after the production rate 
peaks.  We presented historical data from major oilfields on four continents that 
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confirm this counter-intuitive consequence of the model.  Thus, our highly 
simplified physical model quite naturally gives rise to Hubbert’s peak, i.e. 
Hubbert’s decline from the midpoint empirical model of oil production. 

The authors would like to thank D. de Graaf for suggesting this approach to 
modelling oil production, Steve Strogatz and Michael Boardman for useful 
consultations, and Roger Blanchard for suggesting a possible source of data. 
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